Simplified modeling of thermochemical energy storage system (TCES) for solar power tower using the System Advisor Model (SAM)

SAM Virtual Conference 07/09/2015

Rounak A. Kharaita

^aSolar Energy Engineer, Leidos Engineering

Dr. Greg Jackson^b, Dr. Robert Braun^b

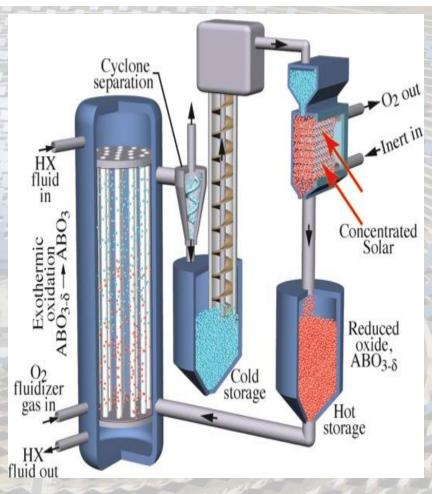
^bColorado School of Mines

COLORADOSCHOOLOFMINES... EARTH • ENERGY • ENVIRONMENT

Background

Earth • Energy • Environment

- Presenter background
- Project background
 - Make CSP viable with technological advancements in thermal energy storage (TES)
 - DOE target \$15/kWh_{th}
 - Colorado School of Mines (CSM), NREL and Abengoa –CSP Elements project
 - Principal Investigator: Greg Jackson, CSM
 - Other Contributors: Robert Braun, CSM; Christina Lopez, Abengoa Solar; Zhiwen Ma, NREL; Ryan O'Hayre, CSM
 - This work Part of M.S Thesis project titled "Thermodynamics of Doped Calcium Manganite for Thermochemical Energy Storage in Concentrated Solar Power Plants"


Thermochemical Energy Storage (TCES) for CSP plants

Earth • Energy • Environment

Colorado School of Mines

- TES and TCES
 - Utilizes chemical energy stored in bonds
 - Stores energy during endothermic reduction
 - Releases energy during exothermic oxidation
- SAM allows modeling of CSP tower system with TES
- This presentation attempts design of CSP tower system with TCES

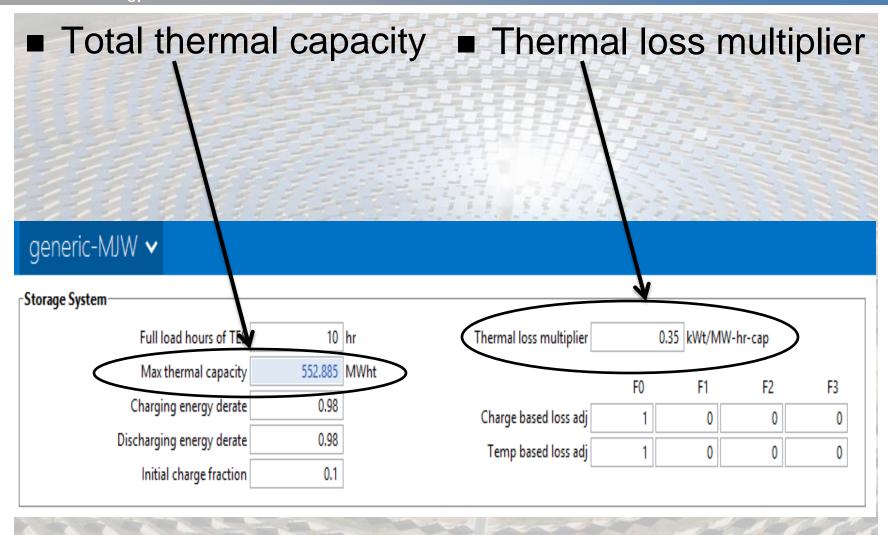
Courtesy: Dr. Kee (CSM)

CSP modeling in SAM

Earth • Energy • Environment

Generic

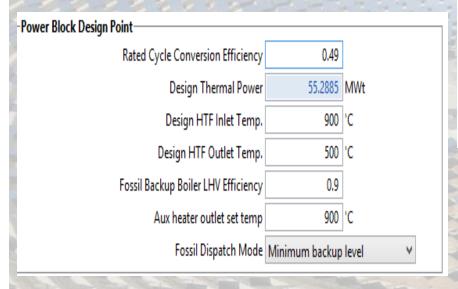
- No 'fluid' selected
- Properties defined by 'MWh'
- TCES based system has less "\$/MWh" than TES based system

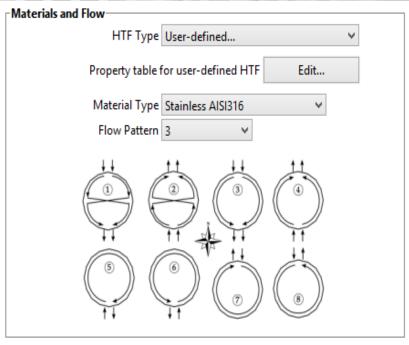

Specific

- Heat transfer fluid (HTF) selected
- Properties defined by Cp, density, kinematic viscosity etc.
- Cost calculations are considered separately
- Defined 2 types of salts as HTF
- Allows 'user defined fluid' as HTF

CSP with TCES using generic model

Earth • Energy • Environment




CSP with TCES using specific model

Earth • Energy • Environment

- CSP with TCES
 - Two tank/ One Tank
 - Type of HTF Molten Salt / User defined
 - HTF inlet/outlet conditions

SAM model for tower based TES system

Earth • Energy • Environment

Location	Mojave, CA		
Gross plant output	23 MW _e		
Power cycle	Rankine superheat steam cycle		
Pressure and temperature	100 bar, 470 °C		
Turbine net output	20 MW _e		
Auxiliary BOP	Air cooled condenser, deaeartor		
HTF inlet [T _{hot}]	565 °C		
HTF outlet [T _{cool}]	290 °C		
No of hours of storage	10 h		
Type of HTF	Molten salt 60% NaNO3 and 40% KNO3		

SAM model for tower based TCES system

Earth • Energy • Environment

Location	Mojave, CA		
Gross plant output	23 MW _e		
Power cycle	Supercritical CO ₂ Brayton cycle		
Pressure and temperature	100 bar, 640 °C		
Turbine net output	20 MW _e		
Auxiliary BOP	Compressor, Recuperator		
HTF inlet [T _{hot}]	900 °C		
HTF outlet $[T_{cool}]$	500 °C		
No of hours of storage	10 h		
Type of HTF	TCES material		

Model set up and results

Earth • Energy • Environment

Colorado School of Mines

User defined values

User -defined input values for TCES material

 SAM does not have ability to define TCES, so define Cp_{eff}

Temperature (°C)	890	940	990
k _g (W m ⁻¹ K ⁻¹)	0.17	0.22	0.30
Δh _{total} (kJ kg ⁻¹)	533	645	766
ρ _{bulk} (kg m ⁻³)	1113	1097	1081
k _{eff} (W m ⁻¹ K ⁻¹)	0.12	0.13	0.14
v (m² s)	2.70E-06	2.74E-06	2.78E-06
Cp _{eff} (kJ kg ⁻¹ K ⁻¹)	1.33	1.42	1.53

[Energy produced]_{TCES} ≈ 0.91 [Energy produced]_{TES}

Challenges in TCES design

Earth • Energy • Environment

- System flow diagram different Particle flow Vs HTF flow
 - Difference in flow types
 - Difference in heat transfer mechanisms
 - SAM uses HTF fluid flow
- Integration of higher efficiency power cycle
 - SAM utilizes superheat Rankine cycle
- Parasitic load

Solutions in TCES design

Earth • Energy • Environment

- System flow diagram different Particle flow Vs HTF flow
 - Difference in flow types Implement/Allow particle flow selection
 - Difference in heat transfer mechanisms
 - SAM uses HTF fluid flow
- Integration of higher efficiency power cycle
 - SAM utilizes superheat Rankine cycle
 - To implement TCES based storage, need to implement supercritical CO₂ cycle
 - Includes replacement of BOP system like deaerator, condenser etc
- Parasitic load determination
 - Efficiency of bucket elevators and PSA auxiliary load requirement already implemented in parasitic load efficiency
- Writing of own script file to be inputted into SAM??

Conclusion & Future Work

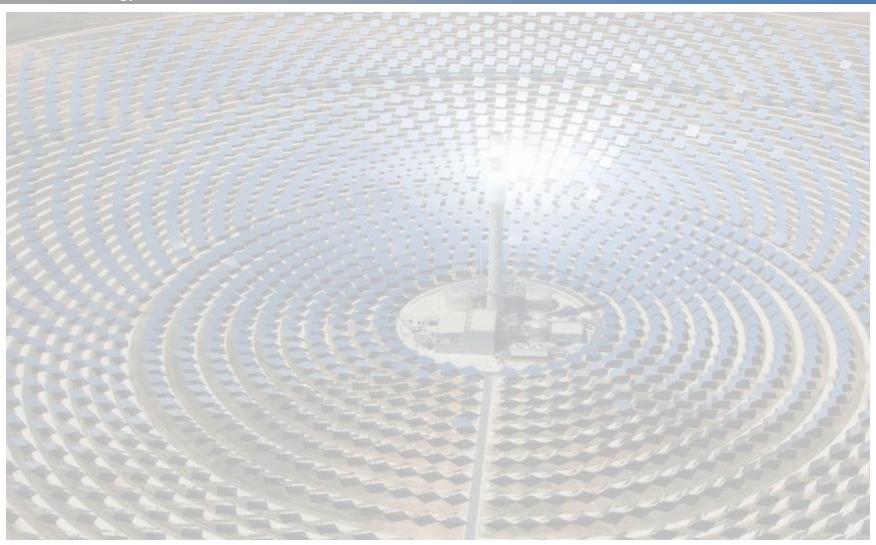
Earth • Energy • Environment

- Attempt was made to design power tower with TCES based system using SAM
- Design Parameters in SAM
 - Effective specific heat Cp_{eff} was defined for 'user-defined HTF'
 - Parasitic load efficiency changed
 - Power conversion efficiency
- Ideally, design parameters in SAM should allow
 - Selection of particle based fluid flow
 - Implementation of other power conversion cycles

Acknowledgment

Earth • Energy • Environment

- DOE for supporting work on this project
- CSP Elements team
 - Dr. G. Jackson, Dr. R. Braun, Dr. R. O'Hayre, Dr. J. Tong, Dr. M. Sanders, K. Albrecht, L. Imponenti, T. Ketchem, CSM
 - C. Lopez and D. Cooney, Abengoa and Dr. Ma, Dr. Martinek, NREL
- Michael Wagner, NREL /CSM for his valuable inputs
- Leidos Engineering
 - Carol Babb, Heidi Larson, Todd Tolliver, Mark Ruesser.



Supplementary slides

Earth • Energy • Environment

